Outline	Motivating Example	NPI 00	Discussion

Nonparametric Predictive Utility Inference

Brett $\operatorname{Houlding}^1$ and $\operatorname{Frank}\,\operatorname{Coolen}^2$

¹Dept. Statistics, Trinity College Dublin, Ireland

²Dept. Mathematical Sciences, Durham University, UK

Outline	Motivating Example	NPI 00	NPUI 000000000	Discussion

Outline:

Outline	Motivating Example ●○	NPI 00	NPUI 000000000	Discussion
Motivating Ex	ample			

Which to choose?

Known fruits:

Newly discovered fruits:

(Dragon Fruit)

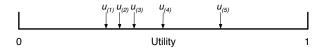
(Mangosteen)

Outline	Motivating Example ○●	NPI 00	NPUI 000000000	Discussion
Motivating Exam	ıple			

Which to choose?

Known fruits:

• Five previously experienced fruits f_1, \ldots, f_5 which, on a [0, 1] scale, have ordered utility values $u_{(1)}, \ldots, u_{(5)}$ equal to 0.3, 0.35, 0.4, 0.5 and 0.7:



Newly discovered fruits:

• Two alternative and unexperienced fruits *f_{new}* and *f_{new2}*.

What to select in a one off choice? What about a sequential choice?

Outline	Motivating Example	Uncertain Utility ●○○○	NPI 00	NPUI 000000000	Discussion
Bayesian Decis	ion Theory				

Bayesian Decision Theory

- In Bayesian statistics, beliefs over an unknown random quantity are typically assigned a parametric model. Learning then occurs following observation of data that has probabilistic dependence with the unknown random quantity.
- The theory is well established (though not undisputed):

Posterior \propto Likelihood \times Prior

- If the aim of the analysis is to perform statistical inference, then the posterior distribution (or posterior predictive distribution) is all that is of interest.
- If, however, the aim is to aid ('optimal'?) decision making, then the preferences of the decision maker should be taken into account.
- Preferences are modelled via a utility function, which is typically assumed to be fully known, *i.e.*, preferences are known precisely.
- The 'optimal' decision is then (the) one that gives highest expected utility with respect to beliefs over the random quantity involved.

Outline	Motivating Example	Uncertain Utility ○●○○	NPI 00	NPUI 000000000	Discussion
Traditional Utilit	ty Theory				

Traditional Utility Theory

- Preference over decisions reconstructed from assumed known utility of decision outcomes and the probability of achieving that outcome.
- Usual to assume a fixed utility form, and/or specific utility values for the available outcomes:
 - $u(\$x) = \log(x+c)$
 - u(apple) = 0.9, u(banana) = 0.5
- Does not permit inherent uncertainty in preferences over decisions.
- Does not allow the learning of utility and assumes the decision maker will never be surprised by the utility of an outcome.

Outline	Motivating Example	Uncertain Utility ○○●○	NPI 00	NPUI 000000000	Discussion
Adaptive Utility					

Adaptive Utility

- In reality people often learn (about) preferences, e.g., by experimenting.
- This requires a generalization of the traditional concept of utility.
- Adaptive Utility, as first suggested by Cyert & DeGroot [3], is one such possibility.
- Basic idea rather simple: Treat utility in the same way that unknown random quantities are typically treated in standard Bayesian statistical inference, *i.e.*, subject them to a parametric belief model, for example:

$$u(saving, speed | \theta) = (1 - \theta) imes saving + heta imes speed$$

Outline	Motivating Example	Uncertain Utility ○○○●	NPI 00	NPUI 000000000	Discussion

Adaptive Utility

This idea was further developed by Houlding [6]:

- Construction of adaptive utility from commensurable options.
- Application in sequential problems, *e.g.*, reliability.
- How is value of sample information affected by uncertainty in preferences.
- Adaptive Utility leads to a concept of trial aversion.

Yet despite the above, there are remaining issues:

- How to determine prior beliefs over an uncertain utility value?
- How to determine a likelihood linking the uncertain utility value with utility data?
- What is utility data?

Outline	Motivating Example	NPI ●○	NPUI 000000000	Discussion
NPI				

Nonparametric Predictive Inference

Based on Hill's $A_{(n)}$ assumption [4]:

Let real-valued $x_{(1)} < \ldots < x_{(n)}$ be the ordered values of data x_1, \ldots, x_n , and let X_i be the corresponding pre-data random quantities, then:

1 The observable random quantities X_1, \ldots, X_n are exchangeable.

- **2** Ties have probability 0, so $x_i \neq x_j$ for all $i \neq j$, almost surely.
- **3** Given data x_1, \ldots, x_n and the definition that $x_{(0)} = -\infty$, $x_{(n+1)} = \infty$, $I_j = (x_{(j-1)}, x_{(j)})$, then for $j = 1, \ldots, n+1$:

$$P(X_{n+1} \in I_j) = \frac{1}{n+1}$$

This generalises to the following predictive probability bounds:

$$\underline{P}(X_{n+1} \in B) = \frac{|\{j : I_j \subseteq B\}|}{n+1}, \overline{P}(X_{n+1} \in B) = \frac{|\{j : I_j \cap B \neq \phi\}}{n+1}$$

Outline	Motivating Example	NPI ○●	NPUI 000000000	Discussion
NPI				

Nonparametric Predictive Inference

- NPI is a low structure statistical technique that is predictive by nature.
- Less restrictive belief model that is closer to resembling a state of ignorance.
- Less presumptious alternative for making inference than the direct specification of conditional independencies and specific distributional forms.
- May be relevant when there is a lack of additional information further to the data itself.
- Coincides with the general framework of a finitely additive prior (Hill [5]) and has been related to the theory of imprecise probability (Augustin & Coolen [1]).
- Subjectivist interpretation of lower and upper bounds on betting price.

Outline	Motivating Example	NPI 00	NPUI ●00000000	Discussion
NPUI				

NPUI

- The NPI statistical technique offers a simple, yet possibly appealing, solution to the problem of identifying an appropriate utility learning model.
- Particularly useful when decision outcomes form a finite set (with assumed exchangeability over their utility values) which includes the option of novel outcomes, *e.g.*, a new brand becomes available in a consumer selection problem.
- Additional possibilities for comparing decisions over multiple sets of outcomes with exchangeability only assumed within each set (Coolen [2]), though not considered here.

Outline	Motivating Example	NPI 00	NPUI ○●○○○○○○○	Discussion
NPUI				

NPUI

- Let u₍₁₎,..., u_(n), with u_(i) ∈ (0, 1) be the known ordered values of the utilities u₁,..., u_n representing preferences over outcomes O_n = {o₁,..., o_n}.
- Let U_n = {U₁,..., U_n} denote the set of random quantities representing the utilities of the elements within O_n before they are experienced, and suppose that the elements of U_n are considered exchangeable.
- Given a new and novel outcome o_{new} whose utility value U_{new} ∈ (0, 1) is unknown but considered exchangeable with the elements of U_n, the NPUI model considered here states only the following:

$$P(U_{new} \in (0, u_{(1)}]) = P(U_{new} \in [u_{(i)}, u_{(i+1)}]) = P(U_{new} \in [u_{(n)}, 1)) = \frac{1}{n+1}$$

Outline	Motivating Example	NPI 00	NPUI ○○●○○○○○○	Discussion
NPUI				

Expected Utility Bounds

NPUI leads to the following rules:

• Lower expected utility bound:

$$\underline{E}[U_{new}] = \frac{1}{n+1} \sum_{i=1}^{n} u_i$$

Upper expected utility bound:

$$\overline{E}[U_{new}] = \frac{1}{n+1} \left(1 + \sum_{i=1}^{n} u_i \right)$$

• Difference in utility bounds:

$$\Delta \Big(E[U_{new}] \Big) = \overline{E}[U_{new}] - \underline{E}[U_{new}] = \frac{1}{n+1}$$

Outline	Motivating Example	NPI 00	NPUI 000●00000	Discussion
NPUI				

Updating

Expected utility bounds of a second novel outcome o_{new_2} once u_{new} is known:

• Lower updated expected utility bound:

$$\underline{E}[U_{new_2}|u_{new}] = \frac{n+1}{n+2}\underline{E}[U_{new}] + \frac{1}{n+2}u_{new}$$

Upper updated expected utility bound:

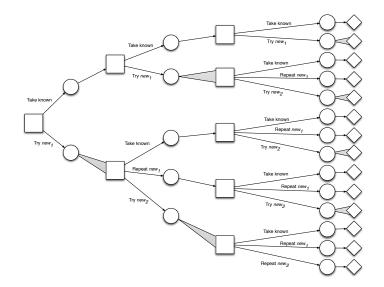
$$\overline{E}[U_{new_2}|u_{new}] = \frac{n+1}{n+2}\overline{E}[U_{new}] + \frac{1}{n+2}u_{new}$$

• Difference in updated utility bounds:

$$\Delta\Big(E[U_{new_2}|u_{new}]\Big)=\frac{1}{n+2}$$

Outline	Motivating Example	NPI 00	NPUI 0000●0000	Discussion

Decision Tree



Outline	Motivating Example	NPI 00	NPUI 00000●000	Discussion

Reduced Decision Tree



Outline	Motivating Example	NPI 00	NPUI ○○○○○○●○○	Discussion
Choice Rules				

Sequential Choice Rules

In a sequential problem, a rule must be devised for choosing future decisions.

Extreme Pessimism:

The DM will always select the outcome or sequential decision path whose lower expected utility bound is greatest. Furthermore, future uncertain utility realisations will always fall at the infimum of any considered interval formed by the ordering of known utility values.

Extreme Optimism:

The DM will always select the outcome or sequential decision path whose upper expected utility bound is greatest. Furthermore, future uncertain utility realisations will always fall at the supremum of any considered interval formed by the ordering of known utility values.

Outline	Motivating Example	NPI 00	NPUI ○○○○○○○●○	Discussion

Conditioning

Expected utility bounds of a second novel outcome o_{new_2} given that only the interval of u_{new} is known:

• Lower conditional expected utility bound:

$$\underline{E}[U_{new_2}|U_{new} \in I_j] = \frac{1}{n+2} \Big(\sum_{i=1}^n u_i + \inf(I_j)\Big)$$

Upper conditional expected utility bound:

$$\overline{E}[U_{new_2}|U_{new} \in I_j] = \frac{1}{n+2} \Big(1 + \sum_{i=1}^n u_i + \sup(I_j)\Big)$$

• Difference in updated utility bounds:

$$\Delta\left(E[U_{new_2}|U_{new} \in I_j]\right) = \frac{1 + \sup(I_j) - \inf(I_j)}{n+2}$$

• Internal Consistency:

$$\underline{E}[U_{new_2}] = \sum_{j=1}^{n+1} \underline{E}[U_{new_2} | U_{new} \in I_j] P(U_{new} \in I_j)$$

Outline	Motivating Example	NPI 00	NPUI ○○○○○○○●	Discussion

Summary Results Table

	Pessi	mistic	Optimistic		Select a Novel Option	
Available	Lower Bound	Upper Bound	Lower Bound	Upper Bound	Pessimistic	Optimistic
f ₁	1.298	1.817	1.298	1.817	Yes	Yes
f_2	1.305	1.819	1.305	1.819	Yes	Yes
f3	1.323	1.785	1.319	1.826	Yes	Yes
f ₄	1.500	1.500	1.367	1.855	No	Yes
f ₅	2.100	2.100	2.100	2.100	No	No

Expected Utility for Optimal Decision Strategy

For the one-period problem:

$$\underline{E}[U_{new}] = 0.375$$
$$\overline{E}[U_{new}] \approx 0.542$$

Outline	Motivating Example	NPI 00	NPUI 000000000	Discussion ●○
Discussion				

Discussion

- NPUI appears to offer a simple, yet possibly appealing, model for utility learning.
- There has been limited discussion on the idea that preferences over decision outcomes may be uncertain, even though such scenarios have empirical support.
- How should uncertainty over preferences be incorporated within a normative decision analysis, and what are the implications of utility learning models?
- What sequential choice rule(s) should be employed?
- How to determine scaling within [0, 1] interval, or more generally, how to deal with the problem of induction when the actual value realized can be far better or far worse then anything as yet observed, and when it is the actual value that is important rather than the ordinal ranking.

Outline	Motivating Example	Uncertain Utility 0000	NPI 00	NPUI 000000000	Discussion
References					
	T. Augustin and F.P.A. Coolen.				
	Nonparametric predictive in	FERENCE AND INTERVAL PRO	BABILITY.		
	Journal of Statistical Planning ar	nd Inference, 124:251–272, 20	04.		
	F.P.A. Coolen.				
	Comparing Two Populations	BASED ON LOW STOCHASTIC	C Structure A	SSUMPTIONS.	
	Statistics & Probability Letters, 2	29:297–305, 1996.			
	R.M. Cyert and M.H. DeGroot.				
	Adaptive Utility.				
	In R.H. Day and T. Groves, edito York, 1975.	ors, Adaptive Economic Mo	DDELS, pages 223	–246. Academic Press,	New
	B.M. Hill.				
	POSTERIOR DISTRIBUTION OF P	ercentiles: Bayes' Theori	em for Samplin	IG FROM A POPULATIO	Ν.
	Journal of the American Statistic	cal Association, 63:677–691, 1	968.		

B.M. Hill.

DE FINETTI'S THEOREM, INDUCTION, AND $A_{(n)}$ OR BAYESIAN NONPARAMETRIC PREDICTIVE INFERENCE (WITH DISCUSSION).

In J.M. Bernardo, M.H. DeGroot, D.V. Lindley, and A.F.M. Smith, editors, *Bayesian Statistics 3*, pages 211–241. Oxford University Press, 1988.

B. Houlding.

SEQUENTIAL DECISION MAKING WITH ADAPTIVE UTILITY.

PhD thesis, Dept. Mathematical Sciences, Durham University, UK, 2008.